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Abstract

Deployable structures made of elastic materials connected by rotational pivots that transform from a
flat state to a curved surface have advantages such as being lightweight and construction efficiency. In
particular, the geodesic grid shell, in which flat members follow the geodesics of the surface, has one
degree of freedom for in-plane deformation, which makes its deployment easy to control. In this study,
we propose a design method for deployable surface mechanisms based on a combination of bending-
active scissors structures. The mechanism transforms into a 3D curved surface due to the incompatibility
of the in-plane shear deformation of the scissors’ units.

In this paper, we geometrically show that if two states of the same combination of unis exist, they can
smoothly transition between them. Using this feature, we propose a design method for a mechanism
that can deploy to a target surface by creating two states of equal length. We also present design ex-
amples and physical prototypes. Our structure can be efficiently fabricated by the assembly of short,
straight members in the 2D state. We believe this method can be applied to deployable structures such
as temporary shelters and flexible partitions.
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1. Introduction
Deployable gridshell structures, which consist of elastically deformable straight members connected by
pivot hinges, have advantages such as being lightweight, construction efficiency, and material efficiency.
In particular, the geodesic grid shell, in which slats follow the geodesics of the surface, has one degree of
freedom for in-plane deformation, which makes its deployment easy to control. The structural principle
of such transformable surface mechanisms has been used in the traditional craft of finger traps and
modern fashion designs. Our objective is to explore the kinematics of the mechanisms and the surface
design where the slats are joined with rotational pivots to make them useful for deployable grid shells
and adaptive products.

If we consider the kinematics of the mechanisms connected by rotational pivots, they generally form an
overconstrained system in the in-plane deformation. This makes it impossible for the system to create an
arbitrary target surface with a single geodesic grid. Pillwein et al. [1] proposed a method to obtain curved
surfaces by replacing pivot holes with slits with play and sliding the hinge. However, this method pro-
vides additional degrees of freedom and requires the slide hinges to be fixed after deployment. A method
without play in hinges is proposed in [2], however, it is kinematically overconstrained, and the member
must bend in the in-plane direction before deployment and during the deployment operation. Ono and
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Figure 1: Example of the bending-active scissors mechanism.

unit by general parallel grid
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Figure 2: In-plane scissors’ transformation of a single grid. (a) unit of the general parallel grid, (b)
scissors’ unit by quadrilateral diagonals.

Tachi [3] achieved one-degree-of-freedom in-plane deformation by dividing the surface into multiple
segments and connecting the scissors’ units without play. They generated surfaces with constant neg-
ative curvature but were limited to rotationally symmetric shapes because the combination of multiple
units is generally overconstrained. Nishimoto and Tachi [4] identified general compatibility conditions
for the combination of multiple grids. However, the method of designing the mechanism from the tar-
get geometry was limited to the combination of symmetrical shape units that satisfy the compatibility
conditions. In addition, the connection of the endpoints of the grid members was problematic, making
it difficult to produce a physical model.

This research aims to construct a curved surface mechanism that deploys with one degree of freedom
by connecting multiple bending-active geodesic scissors units (Figure1). First, we describe the in-plane
deformation of the unit geometrically and show the compatibility conditions for multiple scissors to be
valid and have a continuous motion around a vertex. We also clarify that the existence of two states is
a necessary and sufficient condition for obtaining continuous mechanisms (Section 2.). Next, using this
property, we introduce a design method for mechanisms that can deploy to given target surfaces (Sec-
tion 3.). We also present examples of actual design and fabrication of mechanisms using the proposed
method (Section 4.).

2. Geometry of scissors’ transformation
In this paper, we consider the scissors created by the diagonals of a convex quadrilateral as a unit (Figure
2 (b)). The authors proposed a mechanism in which units created by cropping parallel grids in arbitrary
polygons are connected by edges, in [4] (Figure 2 (a)). The scissors unit considered in this paper can be
taken as a special case of a possible unit shape such that the diagonals of the polygon and the interior
members are coincident. However, this section’s discussion of scale factors can also apply to units that
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Figure 3: (a) Scissors’ transformation of one unit, (b) canonical configuration, (c) n units connection
around a vertex.

are cut from general parallel grids.

2.1. Scissors’ transformation of single unit

When the scissors’ unit transforms in-plane, each edge of the quadrilateral unit expands or contracts. The
direction that bisects the member direction is the principal direction, and the angle from the principal
direction to the member direction is the scissors’ angle θ. The angle between two consecutive edges of
the unit, sector angle, changes by changing θ. We let α and β, called edge angles, be the angle from
the principal direction to the edges, so |α − β| is the sector angle between the edges. To represent the
direction of the edges independently of the scissors’ angle, we use the form with θ = 45◦, called the
canonical configuration, and let α̃, β̃ be the edge angles in the canonical configuration (Figure 3(b)).

The scale factor Sα̃ of the edge in the direction of the edge angle α̃ when transforming from state A

(θ = θA) to state B (θ = θB) can be expressed as follows:

S2
α̃ =

1 + cos 2α̃ cos 2θB

1 + cos 2α̃ cos 2θA
. (1)

Sβ̃ can be expressed in the same way as Equation (1) using β̃, therefore Sβ̃ can be obtaind from Sα̃ as
follows.

S2
β̃
=

− sec 2α̃+ sec 2β̃ + (cos 2θA + sec 2α̃)S2
α̃

cos 2θA + sec 2β̃
(2)
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Since α̃, β̃, and θA are constant if the parameters of the stateA are given, S2
β̃

is expressed by the following
linear equation.

S2
β̃
= rS2

α̃ + s (3)

where,

r =
cos 2θA + sec 2α̃

cos 2θA + sec 2β̃
, s =

− sec 2α̃+ sec 2β̃

cos 2θA + sec 2β̃
. (4)

From Equation (3), we can obtain the scale factor of one edge from the scale factor of another edge.

2.2. Compatibility between multiple units

When multiple units are connected serially with a common edge, they form a one-DOF mechanism
because of the propagation of edge scaling. However, if the connection has an internal vertex, the
overall structure is overconstrained because this connection has a closed loop. Therefore, the motion
is generally incompatible but can be linked under specific conditions. In the following, we discuss the
conditions under which a mechanism becomes compatible around an internal vertex and can be linked
as a one-degree-of-freedom mechanism. If it can be linked together, the sum of the sector angles of the
units around the vertex increases or decreases, resulting in a transformation from a planar to a three-
dimensional surface.

Consider a situation where n units (U0, U1, ..., U(n−1)) are connected around a vertex (Figure 3(c)) (i =
0, 1, 2, . . . , n− 1, modulo n). The scale factor of the edge Si can be obtained from S0 as follows.

S2
i = PiS

2
0 +Qi, (5)

where,

Pi =

i−1∏
k=0

rk, Qi = Pi

i−1∑
k=0

1

Pk+1
sk, (6)

where rk and sk are obtained as the r and s of each unit k obtained by Equation (4).

The necessary and sufficient condition that the mechanism is valid around the vertex with n unit at state
A is that the lengths of the 0th and nth edges are identical (lA0 = lAn ). In addition, for this to form a
continuous mechanism, S0 = Sn needs to be satisfied for a continuous family of varying S0. This is
equivalent to Equation (5) being identity:

Pn = 1, Qn = 0. (7)

2.3. Equivalent condition for multi-vertex structure

For mechanisms with multiple closed vertices, directly finding the parameters of all units that simulta-
neously satisfy Equation (7) is not straightforward. Instead, we can use the following equivalence of
the existence of motion and the existence of states. Since scale factor propagation can be expressed as a
linear Equation (3), if there are two states in which the same units are connected in the same relationship,
the mechanism can go back and forth between the two states (Figure 4).

This can be explained by using the scale factor as follows. First, suppose that there exist two states in
which S0 = Sn = 1 and S0 = Sn = S, respectively. Substituting these values into Equation (5), we
obtain the following equation.

1 = Pn +Qn, and S2 = S2Pn +Qn. (8)
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State A State B
continuous motion 

Figure 4: Equivalence between the existence of motion and the existence of states. If two states of the
same connection relationship of the same unit exist, there is a continuous motion between them.

From Equation (8), if S ̸= 1, Pn = 1 and Qn = 0 holds, so Equation (7) is satisfied. Therefore, if there
are two valid states of the same combination of units, they form a continuous mechanism between two
states. In the following design methods, we use this equivalence to computationally find a mechanism
by finding two compatible configurations, A and B.

3. Design method
In this section, we propose a method for designing compatible mechanisms by generating two states in
which the same units are connected in the same relationship. We implemented a method for designing
mechanisms by combining multiple scissors’ units and can deploy to a given target surface from a
flat state. We used Grasshopper [5] and Kangaroo2 [6] for the implementation of 3D-CAD software
Rhinoceros.

3.1. Design flow

In the proposed design process, we obtain two compatible states, A and B, which guarantee the com-
patible deployment motion from A to B. The design flow is as follows (Figure 5).

1. Input a target curved surface (initial of state B) and divide the surface into a quadrilateral mesh.

2. Create a flat mesh (initial of state A) with the same connection relationship.

3. Using the 3D and 2D shapes created in Step 2 as the initial state, let the member lengths of states
A and B be the same.

In Step 1, we constrain the number of units gathered around a vertex to be even. This is because, in a
scissors’ unit with quadrilateral diagonals, when one edge expands, the neighboring edge shrinks. The
scale factors around the quad Si (i = 0, 1, 2, 3) satisfy S1, S3 > 1 and S2, S0 < 1 (or its opposite). The
initial surface division affects the final result, as discussed in Section 3.2..

In Step 2, a simple rectangular grid can be used if the original mesh is a regular quadrilateral mesh.

For Step 3, we created a dynamic relaxation model in which the bars were defined as springs and mini-
mized the potential energy as follows (Figure 6). Here,[] are the names of the goals in Kangaroo2.

Linear Spring (Between A and B) Ensure that identical bars are the same length in the two states. At
the same time, set a minimum length to prevent the bar from getting too short. [Equal Length,
Clamp Length]

Angle spring 1 (For both A and B) Keep the scissors members in a straight line . [Angle]
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1. Surface division 3. Equal rength contsraint 
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Figure 5: Design flow.

Angle spring 2 (For both A and B) Keep the fold angles between each mesh face (represents the out-
of-plane stiffness). [Hinge]

Anchor (For state A) Constrain the vertices of the 2D State on the plane. (For state B) Constrain
the internal vertices of the unit connection on the target surface and the exterior vertices on the
boundary curve. [On Mesh, On Curve, On Plane]

We set the Linear springs, Angle spring 1, and Anchor on 2D plane hard constraints (with high stiffness)
and the other springs soft constraints (with lower stiffness).

Here, Angular Spring 1 constrains the original quadrangular face of the mesh to be planar. This condition
is overconstraining as each face does not need to be planar in reality. In actual material, the members
can bend in the out-of-plane direction while keeping it geodesically straight on the surface. Geometric
constraints to achieve geodesic straightness is still a future work of this study.

3.2. Effect of surface division

The method does not always result in good convergence, depending on the target geometry, parameters
of constraints, and initial surface division. Empirically, we found that better convergence solutions were
obtained when the target surface was divided into quadrilaterals that were long in one direction in Step 1.
This can be attributed to the property of the scissors’ units that extend in one direction and contract in
the orthogonal direction. The larger the scale factor of the unit’s edges, the larger the range of achievable
sector angles around the vertex. If the quadrilaterals in the 3D state are long in one direction, a larger
edge scaling can be achieved by extending the flat shape in the opposite direction. This enables the
larger range of increasing or decreasing sector angles of the unit around the vertex to form a larger
family of three-dimensional shapes. In contrast, if the quadrilaterals in the 3D state have nearly square
proportions, it may not be possible to ensure a sufficient edge scale factor to reproduce the shape of the
target.

To verify this hypothesis, we examined the influence of surface division shape in Step 1 of the method
on the results by comparing design results using different proportions of quadrilaterals in the 3D state.
Figure 7 shows the results of designing the same target surface with varying numbers of divisions: (a)
5× 5, (b) 5× 7, and (c) 5× 10. While (b) and (c) converged with a 2D shape extending in one direction,
(a) failed to converge, with the corner units completely folded in the 2D state.
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Figure 7: Comparison of the effect of different proportions of quadrilateral segmentation on convergence
results. Top: initial state, bottom: results. (a) 5× 5, (b) 5× 7, (c) 5× 10.

7



Proceedings of the IASS Annual Symposium 2024
Redefining the Art of Structural Design

4. Design examples and fabrication
4.1. Design and fabrication

We designed mechanisms using the method of Section 3. and created physical models. Figure 9 shows
examples of the input surfaces, the design results in 3D and 2D states, and the physical models.

As target surfaces, we used translational surfaces for A to C, revolutional surfaces for D, and a monkey
saddle-like surface for E. For model D, as constraints during optimization, a weak constraint to keep
them in their initial position ([Anchor]) was applied to the vertices of the units instead of [On Curve]
and [On Mesh]. The model E has a 6-fold vertex at the center. We generated the initial quadrilateral mesh
for model E by dividing the target surface into six regions and dividing each of them by a quadrilateral
grid. All models converged to provide the flat pattern in 2D using our proposed computational approach.

The fabrication process is as follows. First, offset the scissors members in the 2D state by a certain width
and make circular holes for pivot hinges at the endpoints and crosspoints to generate the member shape
(Figure 8(a)). Here, the scissors member in the 2D state obtained by the design method is not perfectly
straight and has kinks at a small angle at the crosspoints. From the viewpoint of ease of fabrication, the
member shape was determined by modifying it to a straight line of the same length. The members are
cut out of the sheet material using a laser cutter. The parts are managed by giving them numbers and
engraving them. This time, the width of the member was 14mm and the holes were 5mm in diameter
for all models. We used 1mm or 0.75mm thick polypropylene sheets as the members.

For pivot hinges, we used plastic screws at the points where the four sheets come together and eyelets at
the crossing points of the scissors (Figure 8(b)).

4.2. Results and discussion

Manufactured mechanisms could be deployed to reproduce a shape close to the target surface.

It was observed that the shapes after deployment for all models, particularly for models B and C, were
less curved than the target shapes. This could be caused by the difference in computational models that
allow free rotation between units and the physical models that transfer out-of-plane bending between
units. The elasticity of the material against out-of-plane bending causes the material to return to a flat
surface. Generating a model that takes into account the elasticity of the member is a future work.

In addition, only in-plane curvature can be programmed by this mechanism, and the target shape of
the design is not necessarily the equilibrium shape after the physical model is deployed. For example,
the saddle-shaped model (Figure 9 C) was stable with the direction of the principal curvature shifted
45 degrees from the target. We believe that this is because the strain energy due to the bending of the
member is the smallest in that direction. Fixing the boundary is effective in reproducing the targeted
out-of-plane deformation.

5. Conclusion
This paper presented the principles of transformation and a design approach for transformable curved
surface mechanisms that combine elastically deformable scissors units. We believe that this research can
be applied to deployable shelters and curved formwork structures. In addition, since it can be assembled
in a flat state and later deployed, it offers the advantage of constructing free-form curved structures
accessible to users without specialized skills. We also anticipate its applicability in product design
and artistic endeavors. In the future, we would like to work on structural analysis under load-applied
conditions to apply the mechanism to architectural structures.

8



Proceedings of the IASS Annual Symposium 2024
Redefining the Art of Structural Design

eyelet

polypropylene sheet

(a)

(b)

plastic screw

Figure 8: (a) Cut line generation, (b) detail of physical model.
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